2020/07/27

COVID-19 東京都の感染者数プロファイルの解析 [7月27日]

COVID-19 東京都の感染者数プロファイルの解析

[7月27日]

Profile analyses of COVID-19 affected numbers in Tokyo [July 27, 2020]


東京都が本日7月27日に発表した感染者数は131名でした。4連休の間の検査数が大幅に少なくなったため,感染者数は少なくなりました。
 
確定日別のデータは,26日分がわずか67名です。25日分が177(49名追加)に,24日分が247名(+7名)に増えました。最適化では,最小二乗法での重みを24-26日分は半分としました。

連休直後のため,"τ×平均2"が"τ×増加率"よりも値が際立って小さくなって,26日の値は非現実的な値となっています。"τ×増加率"のカーブはそれほどは小さな発表数の影響を受けておらず,プロファイルは大きくは変わっていません。ただ,感染ピークは31日になりました。
 
今後,連休中の少なかった検査数の反動で,日別の感染者数が2倍近くに大きくなると考えられることから,日別の増加数の軸の最大値を大きくしました。

グラフの見方」は図の下方に挙げてあります。

7月27日発表の東京都の確定日別データ(7月26日まで)に基づいています [図をクリックすると拡大]

"τ×平均2"が,"τ×増加率"よりも小さい(下方の)時は収束の傾向(実効再生産数が減少),大きい(上方の)時はいっそう拡大の傾向(実効再生産数が増大)を意味しています。なお,"τ×増加率"自体も日々のデータに応じた最適化により,更新されていることにご注意ください。

グラフの見方


感染確定日データの日別の感染者数の累計が,"累計obs"です。ただし,最新の値で割って,最大値が1となるようにした"累計obs'"をグラフにプロットしています。

累計obsに合致するようにロジスティック関数を最適化し,最適化した関数による計算値が"累計calc"です。この値を最新の累計obsで割った"累計obs'"と"累計calc'"をプロットしています。最新の"累計obs'"は1です。

"日別obs"は,日別の感染者数です。最適化した関数から計算される日別の感染者数が"日別calc"です。

最適化した関数から計算される内的自然増加率 r から計算される実効再生産数が,"τ×増加率"です。ここでの τ (tau) は,感染者が感染させてしまう平均日数で,値は7を採用しています。初期の頃の"τ×増加率"に1を加えた数が基本再生産数に対応すると考えられ,東京都の第1波では2,第2波では1.55程度です。

日別の感染者数から見積もることができる"τ×増加率"に相当する値について,素のデータが曜日ごとのばらつきが大きいため,7日間の移動平均をとった値が"τ×平均"です。第1波について"τ×平均1",第2波について"τ×平均2"としています。最新の3日間では7日間移動平均が適用できませんが,動向を把握するために,最新日は実際の値そのもの,前日では3日間の,前々日では5日間の移動平均を採用しています。そのため,最新日と前日の値の変動の幅は大きくなっています。

これら"τ×平均"は関数モデルが妥当ならば,"τ×増加率"に次第に合致するはずです。"τ×平均1"は第1波の"τ×増加率"によく沿っていて,"τ×平均2"は変化しながらも第2波の"τ×増加率"に追随しています。

"累計calc'""日別calc""τ×増加率"は日付を指定すれば計算できるので,数日後の値もプロットしています。

日別感染者数がピークに達するとき,"日別calc""τ×増加率"は変曲点に来ます。変曲点に来ると"τ×増加率"が初めのころの値の1/2となります。"τ×増加率""τ×平均"が次第に小さくなって,半分となる時期が感染のピークです。このときの累計感染者数を2倍すると,最大値になります。

"日別calc"はピークを挟んでグラフでは左右対称となります(偶関数です)。ピークの前と後では日別感染者数,および,その累計値(こちらは奇関数)はほとんど同じ値になります。

0 件のコメント:

コメントを投稿