2020/07/19

COVID-19 東京都の感染者数プロファイルの解析 [7月19日]

COVID-19 東京都の感染者数プロファイルの解析

[7月19日]

Profile analyses of COVID-19 affected numbers in Tokyo [July 19, 2020]


東京都が本日7月19日に発表した感染者数は188名でした。確定日別のデータは18日が152名です。17日分は280(32名追加)名に増えました。

日曜日から水曜日の発表の感染者数は相変わらず値が小さくなっています。累計感染者数は直近の最大値が1になるように,スケールを調整してグラフ化しています。そのため,累計感染者が大きくなるにつれて,累計のプロットは下方に圧縮されていきます。 

"τ×平均2"は"τ×増加率"ともに少し下向きになってきたようです。これらは,本日掲載の"COVID-19 感染者数プロファイルの概形"の図3の実効再生産数 RLe のプロットに対応します。変曲点はまだ先です。

グラフの見方」は図の下方に挙げてあります。

7月19日発表の東京都の確定日別データ(7月18日まで)に基づいています [クリックで拡大]

計算,理論,説明などは,7月2日分(7月3日にアップ)をご覧ください。
 
"τ×平均2"が,"τ×増加率"よりも小さい(下方の)時は収束の傾向(実効再生産数が減少),大きい(上方の)時はいっそう拡大の傾向(実効再生産数が増大)を意味しています。なお,"τ×増加率"自体も日々のデータに応じた最適化により,更新されていることにご注意ください。


グラフの見方

 
感染確定日データの日別の感染者数の累計が,"累計obs"です。ただし,最新の値で割って,最大値が1となるようにした"累計obs'"をグラフにプロットしています。

累計obsに合致するようにロジスティック関数を最適化し,最適化した関数による計算値が"累計calc"です。この値を最新の累計obsで割った"累計calc'"をプロットしています。

"日別obs"は,日別の感染者数です。最適化した関数から計算される日別の感染者数が"日別calc"です。

最適化した関数から計算される内的自然増加率 r から計算される実効再生産数が,"τ×増加率"です。ここでの τ (tau) は,感染者が感染させてしまう平均日数で,値は7を採用しています。初期の頃の"τ×増加率"に1を加えた数が基本再生産数に対応すると考えられ,第1波では2,第2波では1.55程度です。

日別の感染者数から見積もることができる,"τ×増加率"に相当する値について,素のデータが曜日ごとのばらつきが大きいため,7日間の移動平均をとった値が"τ×平均"です。第1波について"τ×平均1",第2波について"τ×平均2"としています。最新の3日間では7日間移動平均が適用できませんが,動向を把握するために,最新日は実際の値そのもの,前日では3日間の,前々日では5日間の移動平均を採用しています。

これら"τ×平均"は関数モデルが妥当ならば,"τ×増加率"に次第に合致するはずです。"τ×平均1"は第1波の"τ×増加率"によく沿っていて,"τ×平均2"は変化しながらも第2波の"τ×増加率"に追随しています。

"累計calc'""日別calc""τ×増加率"は日付を指定すれば計算できるので,数日後の値もプロットしています。

日別感染者数がピークに達するとき,"日別calc""τ×増加率"は変曲点に来ます。変曲点に来ると"τ×増加率"が初めのころの値の1/2となります。"τ×増加率""τ×平均"が次第に小さくなって,半分となる時期が感染のピークです。まだまだ先のようです。

"日別calc"はピークを挟んでグラフでは左右対称となります(偶関数です)。ピークの前と後では日別感染者数,および,その累計はほとんど同じ値になります。

0 件のコメント:

コメントを投稿