2020/07/04

COVID-19 東京都の感染者数プロファイルの解析 [7月4日]

COVID-19 東京都の感染者数プロファイルの解析

[7月4日]

Profile analyses of COVID-19 affected numbers in Tokyo [July 4, 2020]


本日7月4日発表分のデータの解析結果(改訂版)です。東京都発表の確定日別のデータは7月3日までで,その前の数日分も更新(増加)となっています。

計算,理論,説明などは,7月2日分(7月3日にアップ)をご覧ください。

矢印で示す"τ×平均2"に注目です。この値が,"τ×増加率"よりも小さい(下方の)時は収束の傾向(実効再生産数が減少),大きい(上方の)時はいっそう拡大の傾向(実効再生産数が増大)を意味しています。ここでは,感染能を保持する期間τ: tauを7日間としています。なお,"増加率"自体も日々のデータに応じた最適化により、更新されていることにご注意ください。

"τ×平均"は採用しているモデルにはほとんど依存しない,感染プロファイルに固有の指標です。最新の"τ×平均2"を最近の傾向と比較するため,"τ×平均1"の3月19日から25日までの値もグラフに示しました。上昇傾向が続いてから折れ曲がると,新しい局面となったと考えることができます。ここ3日間の大きな値が,6月11日の頃のように一時的なものか,それとも新たな局面を示唆するのかに注目です。

"K値を厳密に取扱う"で明らかにしたように,7日間の時間遅れの特性のため,K値は"τ×平均2"を遅れて追随するものとなっていて,ここ数日間の増加の傾向をあまり反映していませんやはり本ブログのような使用(多分に他の多くの目的)には向いていないようです。
7月4日発表の東京都発表の確定日別データ(7月3日まで)に基づいています(改訂版)。

2020/07/03

COVID-19 東京都の感染者数プロファイルの解析 [7月3日]

COVID-19 東京都の感染者数プロファイルの解析

[7月3日]

Profile analyses of COVID-19 affected numbers in Tokyo [July 3, 2020: No. 2]


本日7月3日発表分のデータの解析結果です。東京都発表の確定日別のデータは7月2日までで,その前の数日分も更新(増加)となっています。

計算,理論,説明などは,7月2日分(7月3日にアップ)をご覧ください。

矢印で示す"移動平均'×7"に注目です。"移動平均'×7"が,これまでの増加の傾向と比較して,"増加率×7"よりも小さい(下方の)時は収束の傾向,"増加率×7"よりも大きい(上方の)時はいっそう拡大の傾向を意味しています。

7月3日の東京都発表の確定日別データに基づいています。

 

COVID-19 東京都の感染者数プロファイルの解析 [7月2日]


COVID-19 東京都の感染者数プロファイルの解析


Profile analyses of COVID-19 affected numbers in Tokyo [July 3, 2020]


SIコンパートメント・モデルに対応するロジスティック関数を用いて,東京都の確定日別の累計感染者数を解析します。

使用しているデータは,東京都の公開データ "確定日別による陽性者数の推移"の累計陽性者数のみです(https://stopcovid19.metro.tokyo.lg.jp/?tab=reference)。陽性者を感染者とし,日別の感染者数は,当日の累計数から前日の累計数を差し引いた増分値としています。

採用したモデルでは,累計者数は複数のロジスティック関数の和とし、ここでは2個の関数の和としています。報告されている累計者数にモデルの関数ができるだけ合致するように,関数を最適化しています。

累計者数とモデルによる累計数は,図に表す上で,最新の累計者数(最大値)で除して,それぞれ累計obs'と累計calc'としています。最新の累計obs'1です。

1を見ると,累計obs'と累計calc'がよく重なって,モデルとその最適化が適切であることを表しいてます。

増分値を累計数で除した値の7日間移動平均を7倍した値(先のブログで述べたm7値)を,"移動平均'×7"として図示しています。ただし,分母の累計数は,報告値のばらつきを低減するため,最適化で求めた各関数の累計数に置き換えています(平均化については後述を参照)。

"移動平均'×7"は,ここで採用している,SIモデルなど,モデル関数にはほとんど依存しない,感染プロファイルの固有の特性を表します。一方,図には先のブログで述べた,モデルから算出される τm値(COVID-19では実効再生産数の目安となる)を"増加率×7"として挙げました。"移動平均'×7""増加率×7"はほぼ対応しているといえます。このことは,採用したSIモデルと解析の妥当性を証明するものです。

"移動平均'×7"が,"増加率×7"よりも小さい(下方の)時は,これまでの増加の傾向と比較して,収束の傾向,"増加率×7"よりも大きい(上方の)時はいっそう拡大の傾向を意味します。

7月4日以降では,取扱いに一般性を持たせるために,"移動平均'×7"を"τ×平均"に,"増加率×7"を"τ×増加率"に変更しています(後述があります)。
Fig.1 東京都の感染者数: データ(obs)と計算値(calc) [July 2nd]

K値の挙動


最近のK値も図示しましたが,先の"K値を厳密に取り扱う"で指摘したように,"移動平均'×7"とはぼ同じ挙動となっていますが,ほぼ7日間の遅れ7日前の挙動)となっていて,ここ数日の感染者数の増加を表すことはできていないように見えます(図の矢印の先)。

1には,日別の感染者数を"日別obs",モデル関数を時間で微分した計算値を"日別calc"として,共に挙げました。日別の感染者数には大きなばらつきがありますが,そのプロファイルの様相を計算値はよく表現できています。"移動平均'×7"は日別の感染者数の変化も反映しています。ただし,移動平均の取り方の制限から,最新3日間の取り扱いはその前方とは異なっています。

解析処理


ここでの最適化に用いたパラメータはわずか6個,2組のPrTだけです。解析処理も単純ストレートなものです。これまでのデータに含まれている様々な事象(さまざまな事柄,人々の営み,...)を語ることができるものではありません。そして,過去のデータから将来を予測はできません。しかし,何かが起きていた,傾向が変わってきたことは定量的に把握できます。このことが,将来の取り組みに何らかの寄与をもたらすことができればと望みます。

ここでのデータは,7月2日公表の7月1日までに判明した確定日別の陽性者数です。このデータでは,確定日が判明していない陽性者数が後日追加されて行くというものです。そのため,最新の数日については,その後の発表の都度,数が相当数増えていきます。

今後の推移に注目しましょう。
 

移動平均の取り扱い


"移動平均'×7"は先のブログのm7に相当します。m値自体はある特定の日の値として定義しています。移動平均は,報告データのばらつき(曜日や休日によって検査と集計に偏りが生じています)を単に低減するための操作です。平均化によって意味のある変動がスムーズアウトされることはあり得ます。乗数7は実効再生産数と対比させるための時間日数でもあります。

ここでは,移動平均の累計数は,図示する範囲の10日ほど前の日を基準日とし,その日の値を以降の累計数から減じてから,平均値を算出しています。これは,感染の初期の累計数が小さいために大きなばらつきを示してしまうからです。この基準日の選択の任意性は,数日の間のみで,その後の値には影響をほほとんど及ばさなくなります。K値についても同じ基準値の操作を適用しました。

7月4日以降は,移動平均の分母の累計数としては,各関数から計算される累計数を用いたものに変更しました。この累計数は小さな値から連続的に増大するため,基準日の取り扱いは無くなり,基準日の恣意性が無くなって一般性も向上しています

7日間移動平均は,ある日と前後3日間の平均としています。ただし,最新の日とその2日前までについては,最新の日は当日の値,その1日前は3日間移動平均値,2日前は5日間移動平均値としています。これら日々のばらつきは大きくなりますが,最新の兆候を反映し易くなります。もちろん,時間の経過とともに7日間移動平均に代わるため,ばらつきは少な目になります。

2020/07/01

K値を厳密に取扱う

K値を厳密に取扱う

Exact K-value expression based on the logistic function

(As of July 1st, 2020)

SIモデルのロジスティック関数を用いて,K値をより厳密に取り扱ってみます。いうまでもなく,K値は特定のモデルや関数形を前提としたものではありません。

先のブログ"K値は実効再生産数の見積もりに役立ちます"より
   N = P/{1+exp[-r(t-T)]}                    1)
   m = r /{1+exp[r(t-T)]}                     4)
です。記号については,先のブログのとおりです。

1つのロジスティック関数で表される感染のプロファイルについて,ある日i の日感染者数Di Ni-Ni-1です(Ni はその日の累計感染者数です)。Di /Ni を日毎の増加率 m として定義し,4)式を導きました。r は内的自然増加率とよばれ,1個体がとりうる最大の増加率,tT は時刻を表しています。以上は補足です[7月8日]。

K値は 1-Ni-7/Ni なので,これに1)式を代入すると
   K= 1-{1+exp[-r(t-T)]}/({1+exp[-r(t-T-7)]}
    = 1-{exp(-7r)+exp[r(t-T-7)}/{1+exp[r(t-T-7)]}
exp(-7r) にマクローリン展開を適用すると,
   K = 1-{[1-7r+(7r)2/2 - (7r)3/6 + ...]+exp[r(t-T-7)}/{1+exp[r(t-T-7)]}
     = 1-{1+exp[r(t-T-7)]+[r-(7r)2/2 + (7r)3/6 - ...]}/{1+exp[r(t-T-7)]}
よって
   K = [7r-(7r)2/2+(7r)3/6- ...]/{1+exp[r(t-T-7)]}      5)
これが厳密な表現です。

7r 1程度で,このように小さいときには2次以降の項を省略して次式が得られます。
   K = 7r /{1+exp[r(t-T-7)]}                    6)
なお,5)式の[7r-(7r)2/2+(7r)3/6- ...]は定数なので,5式と6)式は関数形が全く同じです。

6)式は,m値の4)式を7倍したτm値(τ=7)の式を,時間原点を移動させたものです。時間原点の移動は時間の遅れを意味し,先のブログの図1にもその様子が表れています。この性質は,7日前の日感染者数を累計数で除しているK値の定義からも本質的なものです。

指標としての特性


時間の遅れは,感染の急速な増大期には欠点でしょう。なぜならば,COVID-19パンデミックでは感染数が2日間程度で倍,倍と,1週間で4倍以上に,急速に拡大しているためです。また,感染が顕在化するのに少なくとも数日,さらにそれらが感染数として報告されるには数日,これらを合わせると少なくとも1週間を要するからです。このようなデータを解析した値が7日前の挙動を示しているならば,感染から2週間程度の遅れの結果を意味してしまいます。

一方,感染の収束期には,緩やかに感染者数が減少するので,この欠点はあまり問題になりません。むしろ,1週間の移動平均に相当することから,データのばらつきを低減できるので,指標としては有益です。また,感染プロファイルが継続的な場合,その傾向の変化を把握するうえでも役立ちます。大事なことは,K値の特性をよく把握して活用することです。

先のブログで述べたτm値は過去のデータをすべて反映していて,この値からの偏差には時間の遅れは現れません。また,m7値は,ある日とその前後3日間の日感染者数/累計数の7日間移動平均なので,時間の遅れは平均としては小さいものです。最新の日は当日の値,その1日前は3日間移動平均値,2日前は5日間移動平均値とせざるを得ず,ばらつきは大きくなります。これら数値は,感染可能期間τ値が7日間の場合の実効再生産数に対応しています。
 

日感染者数のデータの発表について


感染数の公表に要する時間は,現在では長すぎます。東京都では,報告数を日単位にまとめた報道発表と,確定日別の日感染者数を別に公表しています。前者は都に報告された数の取りまとめをその日付の数としての発表で,報告自体が数日遅れだったり,数日分をまとめた集計の報告だったりと,統計的な精密さを欠きます。後者はより感染日に近いもので,データ処理の結果も感染モデルとの合致が良好で,時刻パラメータが1日半ほど早くなります。後者はそれでも実際に感染が疑われた日から3-4日後の公表です。

陽性が確定した場合の日時(あるいは検査の着手日時にさかのぼって)がリアルタイムに公表されるならば,感染の推移の解析に役立ちます。もしかしたら,"専門家"にはそのような情報が提供されているのでしょうか?

2020/06/29

K値は実効再生産数の見積もりに役立ちます


K値は実効再生産数の見積もりに役立ちます

The K value yields reasonable estimates for effective reproduction numbers

(As of June 29, 2020)

先に,K値(末尾の引用を参照)は"日感染者数の7日間移動平均"×(7/累計感染者数),あるいは,"7日間の日感染者数の和"/(累計感染者数)に等しいことを記しました。

https://ysatow.blogspot.com/2020/06/covid-19-k7.html

ここでは,私のブログで取り上げてきたロジステック関数との関連から,K値についてさらに考察してみます。考察をまとめると,以下のようになります。

1. 感染者数へのロジステック関数の最適化により,実効再生産数を見積もることができます。
2. K値は,感染のピークの前後のグラフでは,直線的になります。
3. K値は,感染の実効再生産数の見積もりに役立ちます。
4. K値は,最大となる感染個体数に依存しないというメリット(広く適用可能)があります。
5. 増加率(日感染者数/累計数)7日間移動平均も感染拡大・収束をよく反映します。
6. ロジステック関数の最適化で得られる増加率はさらに良好な指標といえます。

SIモデルとロジスティック関数


ロジスティック関数は,コンパートメントモデルの基本となるSIモデル(SIRモデル,SIRDモデル等で,RDへの推移を0とした場合に相当)と同じものです(Sは感染へのsusceptibleIinfectious)。一般化ロジスティック関数であるGompertz曲線で,関数形を論ずることもあります。以下では,これまでのロジステック関数の記述(https://ysatow.blogspot.com/2020/05/covid-19_13.html)に準じて述べます。

ロジスティック関数は,
   N = P/{1+exp[-r(t-T)]}                       1)
で表されます。

N はある時刻 t での個体数(感染者数の累計数)。
P は環境収容力とよばれ,ここでは最大となる感染個体数を表します。
r は内的自然増加率とよばれ,1個体がとりうる最大の増加率です(SIモデルのβに相当)。
T は変曲点(N P の半分となる,またはNの増加数が最大となる点)の時刻です。

ロジスティック関数は,関数の微分の形であるロジスティック方程式
   dN/d = r N (1-N/P)                         2)
の微分方程式の解です。ここでは,時刻を日の単位としているので,ロジスティック方程式の値は各時刻(日)における増加数を表しています。

ロジスティック関数の最大値は漸近的に環境収容力P(私の以前の記述では記号Kを用いています)に等しくなります。また,増加数がピークとなった変曲点の時刻はT です。

感染者数の時間プロファイルは複数の感染態様の集計であることから,プロファイルを複数のロジスティック関数の和として表すと,実際の現象をより的確に表現することができます。

日毎の増加率


1つのロジスティック関数で表される感染のプロファイルについて,ある日i の日感染者数Di Ni - Ni-1で,(dN/d)i です。日毎の増加率 m として Di /Ni定めると
   m = Di /Ni = (1/Ni(dN/d)i
です。これに2)式を代入すると,次式のようになります。
   m = r (1-Ni/P)                            3)
さらに1)式も代入すると,
   m = r exp[-r(t-T)]/{1+exp[-r(t-T)]} = r /{1+exp[r(t-T)]}    4)
が得られます。

m の値は,3)式を見て解るように,累計数N に関しては直線です。4)式より,t << T では m r = T では r/2t >> T では 0 となり,増加率の時間とともに減少する性質を有します。 T の感染の累計数の変曲点の近傍では,m は時刻 t に関してほぼ直線的になります。4)式のように表してみると,m には,環境収容力 P の項が含まれていないので,感染の集団の大きさに依存しないという優れた特性があります。

ここで,感染者が他者に感染させる期間を τ とすると,τm は実効再生産数の見積もり(厳密な値ではなく,目安値)を与えることになります。新型コロナウイルスでは,τ 7-9日程度と考えられ,ここでは τ = 7として,以下を考察します。なお,ある日の前後7日間の実際のm値(Di/Ni)の移動平均に7を乗じた値は同様に実効再生産数の見積もりを与えるものと考えられ,これをここでは m7 とよびます。

なお,実効再生産数は感染した日付を基にしており,ここでの感染者数は診断確定日を基にしており,1週間程度の時間の遅れがあります。また,感染したときの感染者数プロファイルに診断確定日のプロファイルは正確には一致しません。ご留意ください。

K値は 1-Ni-7 /Ni で定義され,特定の関数形やモデルを前提にしてはいません。ここでは,1)式を分子と分母に代入すると,やはり感染集団の大きさに依存しない式の形となります。また,(日感染者数の7日間移動平均)/(ある日の累計感染者数)なので,m7値へ近似した値と考えることができます。このことについては,次のブログ"K値を厳密に取り扱う"をご覧ください。
 
図1のグラフは,東京都の確定日別による陽性者数について,累計値(グラフでは累計obs),K値,τm値(増加率×7),m7値(平均×7)をプロットしました。同時にプロットした累計SIcalcは,私が累計値に対して最適化した2つのロジステック関数の和の値です。ここでの τm値はこの最適化した関数から4)式を用いて算出した値2つの和です。なお,累計の基準日は,感染の最初の確定日の122日としています。
Fig.1. K値,τm値(増加率×7),m7値(平均×7の比較
τm値(増加率×7)は感染の主ピークの前方では,実効再生産数1に近い値から滑らかに減少し,47日には0.75413日には0.5428日には0.1まで低下しています。これら値は東京都での経過をよく反映していると考えます。

m7値(平均×7)は,325日からは τm値によく合致した曲線となっており,426日頃まではほぼ直線的です。大まかな挙動はK値のグラフに対応していますが,413日より前は,大きな値でかつ4日ほど挙動が先行しています(これは平均の日々の差3.5日による)。413日以降はK値と同様にほぼτm値に沿っています。

K値とm7値のグラフは,最適化した1変数のτm値とは異なり,細かな変化を反映しています。この変化は,累計obsと累計SIcalcの偏差に現れていますが,7倍してはいないので小さくて見難くなっていますが,図3に示した日別obsと日別calcの偏差をみると,日々の変化がより判別しやすくなります。

累計の基準日を変えてみる


2のグラフに,累計数の基準日(以降の累計数からこの日7日前の累計数を差引く)を330日,そして523日として,K値をプロットしました。τm値については,2つのプロファイルに対応させて,基準日を最初の感染日と523日としています。最初の基準日の後では,図1に比べてK値はより直線的に値は減少し,次第に0に近づいています。しかし,523日以後の直後はK値は大きな値で,τm値との偏差も大きく,時間の経過とともにτm値に近づいています。図13月のm7値はK値よりも大きな値を示していて,523日以降ではいっそうこの傾向は大きくなっています。感染の初期のK値とm7値の解釈には注意が必要です。
Fig.2. K値とτm値(増加率×7)の比較(基準日の選択)
K値は,7×(日感染者数の7日間移動平均)/(累計感染者数)なので,τm値と7日間移動平均のm7値とは厳密には対応しませんが,τm値すなわち実効再生産数の変化を反映した指標といえます。したがって,τm値との対応が良くなる感染の収束の時期に,K値を収束の指標とすることは理にかなっています。

この考察も,たとえばK値の適用も,過去のデータに従えば,現状と将来はこのようになると述べています。将来の結果が解析と異なってきた,結果が合致しない,などに気が付くことができれば,大きな意義があります。日々の報告に接して,有意な変異に気が付くためには指標は重要です。

東京都の最近の状況


3に,東京都の確定日別による陽性者数について,日感染者数(日別obs),2つのロジスティック関数の和で算出したdN/dを日別SI calc として,図2τm値(増加率×7)とともに示しました。 

最初の大きな感染者数の分布を見てみましょう。その日感染者数,あるいは累計感染者数のプロファイルを,実効再生産数を反映するτm値の振舞から完全に説明はできるのですが,これら相互の関係をひと目で把握することはなかなか難しいものです。これら数量は,微分値,積分値,増幅値(密度効果を担う)となっているからです。それでも,たとえば,実効再生産数の目安値0.05となったときの,日感染者数,累計感染者数はいかなる値かは参照できるので,これらの値(場合によってはこれら値から計算できる週平均m7値やK値など)に着目してもよさそうです。

523日以降の感染者数の増加は,4月のピークの残り火が消えきらずに勢いを強めているようです。この増加は627日時点ではまだピークを迎えていないようですが,実効再生産数の目安値0.45から徐々に減少しており,関数形は奇関数なので,まだまだ現状の日感染者数が大きい状態は続きます。このまま経過するならば,実効再生産数の目安値現時点の0.3から次第に減少するので,大幅な感染者数の増加は無さそうです。

一方,523日以降の感染者の増加のロジスティック関数の最適化では,環境収容力P3,000に近い値になっています。523日以降の累計感染者数は1,000名を既に超えており(629日現在),"このまま感染が推移する"と緩やかに経過するとしても,2,000名という大きな数の累計感染者数がこの先に発生するのではないかと危惧されます。

Fig.3. 東京都の日感染者数: データ(obs)と計算値(calc)および τm値(増加率×7

Data source: 東京都の公開データ "確定日別による陽性者数の推移"
https://stopcovid19.metro.tokyo.lg.jp/?tab=reference


なお,τm値はこの先2か月程度までは計算してグラフにプロットできますが,変曲点の前方のデータだけから算出した値は誤差が大きいので,将来の予測に用いるときには注意が必要です。 予測性については"東京都の感染収束傾向は4月下旬には推測できた?"をご覧ください。

検討した感染の時間プロファイルは,大きな1つの集団にまとめたものです。この集団の中には多数の小さな集団(クラスター)が存在しています。東京都や日本全体などを対象とする大局的な検討は全体の傾向の把握に役立つますが,一括りにした結果では埋もれてしまって顕在化しない集団が多くあり得ます。例えば,先に示した福岡県,北海道,神奈川県などの感染のプロファイルは,日本全体のプロファイルにはほとんど顕れてきません。より小さな地域や集団についての検討が必要で,このブログでの取り組みは皆さんの理解に役立つものと考えています。

ここで示したロジスティック関数で算出したτm値(増加率×7)などは,感染のプロファイルの広い領域に渡って,感染の進行の理解に役立つ指標といえます。

大阪大学の中野貴志教授らによる論文の preprint: Novel indicator of change in COVID-19 spread status: by Takashi Nakano, Yoichi Ikeda (doi: https://doi.org/10.1101/2020.04.25.20080200)

この論文については,次のwebサイト[中野貴志教授(核物理研究センター)による論文等(K値について)]に詳しく記載されています。https://www.osaka-u.ac.jp/ja/news/info/corona/corona_info/from_members/rcnp_nakano

COVID-19 K値は日感染者数の7日間移動平均に対応する


COVID-19: K値は日感染者数の7日間移動平均に対応する

COVID-19: The K value is related to the 7-days moving average of daily increases in infected cases

(As of June 29, 2020)

最近注目の,大阪大学の中野貴志教授らによる,K値について考察してみました。

中野貴志教授らによる論文のpreprint: Novel indicator of change in COVID-19 spread status: by Takashi Nakano, Yoichi Ikeda (doi: https://doi.org/10.1101/2020.04.25.20080200)
この論文については,次のwebサイト[中野貴志教授(核物理研究センター)による論文等(K値について)]に詳しく記載されています。
https://www.osaka-u.ac.jp/ja/news/info/corona/corona_info/from_members/rcnp_nakano

上記の論文でのK値は,
    K =1(1週間前の総感染者数)/(当日の総感染者数)        1)
として表されています。

1日の新たな日感染者数の,ある基準日からの累計が総感染者数です。1週間前の総感染者数は,直前の7日間の日感染者の和を,当日の総感染者数から差し引いた数となります。
   (1週間前の総感染者数)=(当日の総感染者数)(7日間の日感染者の和)
ところで,
   (7日間の日感染者の和)=7×(7日間の日感染者の和/7)=7×(7日間の日感染者の移動平均)
なので,この2つの関係を式1)に代入すると,
   K =1(当日の総感染者数)7×(7日間の日感染者の移動平均)}/(当日の総感染者数)
      =7×(7日間の日感染者の移動平均)/(当日の総感染者数)
      =(7日間の日感染者の和)/(当日の総感染者数)
となります。この値を以下では仮に補正移動平均値Mとよびます。

次のグラフは,東京都の確定日別による陽性者数について,累計値(グラフでは累計obs),K値,M値をプロットしました。同時にプロットした累計SIcalcは,私が累計値に対して最適化したロジステック関数の値です。なお,累計の基準日は,感染の最初の確定日である122日としています。
Fig. 1 K値と補正移動平均値Mの比較(東京都の確定日別陽性者数)
グラフを見ると,K値とM値は完璧に一致しており,同じものであることが解ります。すなわち,K値は,(7日間の日感染者の和)/(当日の総感染者数),あるいは,7×(7日間の日感染者の移動平均)/(当日の総感染者数)です。感染者数の指標として7日間の移動平均値を採用する場合も多々見受けられ,それらの値を累計数で除したものがK値に相当すると考えると,双方とも互いに密接に関連していると理解できます。

次のグラフでは,累計数の基準日(以降の累計数からこの日7日前の累計数を差引く)を330日,そして523日として,K値とM値をプロットしました。これら基準日の後では,ほぼ直線的に値は減少しています。しかし,値が小さくなるにつれて,傾きの絶対値は小さくなっています。
 
Fig. 2 K値とM値の比較(基準日の選択)

なお,ロジステック関数は,コンパートメントモデルの基本となるSIモデル(SIRモデル,SIRDモデル等で,RDへの推移を0とした場合に相当)と同じものです。ここでは,2つのロジステック関数の和として累計数に最適化しています。このときの日感染者数と,最適化関数から計算した日感染者数を次に示します。
Fig. 3  東京都の感染者数
Data source: 東京都の公開データ"確定日別による陽性者数の推移"
https://stopcovid19.metro.tokyo.lg.jp/?tab=reference

2020/06/06

COVID-19 福岡県の感染者数の推移と予測

COVID-19 福岡県の感染者数の推移と予測

(2020年6月6日)

Logistic Growth Estimation for COVID-19 Pandemic in Fukuoka Pref., Japan (As of June 6, 2020)


福岡県のCOVID-19新型コロナウィルス感染症の感染者数について,ロジスティック関数を最適化してみました。

方法は,先のページと同様に,ロジスティック関数2つの和を,累計の陽性者数を感染者数として,これらに最適化しています。報告されている感染者数データは,曜日などに依存して,とても大きなばらつきを示していますが,そのまま計算に使用しました。

高いピークの変曲点は4月11日で,日本国内全体と東京都の値よりも数日早く,内的自然増加率は0.187とやや大きいものでした。

最近の鋭いピークの変曲点は5月29日で,大きなピークから48日間も経過しています。内的自然増加率は0.545と極めて大きな値が得られました。これは,感染の始まりでは,基本再生産数4.0に相当する値で,急速な感染の拡大を示唆します。このピークは,北九州市とその周辺での複数のクラスターの同時発生を反映した第2波にあたるものでしょう。

なお,感染者データの日付は,実際に感染が生じた日付からは少なくても7~9日間程度の遅れがあるものと考えらえます。よって,最近のピークの感染は,始まりが5月12日頃で,ピークは5月21日とその前後と推測され,現在はほぼ終息に近い状態にあるようです。

感染がこのまま収束し,新たな感染の始まりと広まりが起きないことを願います。なお,このページは,計算結果の検証を目的とし,将来をなんら保証するものではありません。

COVID-19 Fukuoka Pre., Japan

Data source: 福岡県 新型コロナウイルス感染症 陽性患者発表情報
https://ckan.open-governmentdata.org/dataset/401000_pref_fukuoka_covid19_patients